翻訳と辞書 |
Smooth topology : ウィキペディア英語版 | Smooth topology In algebraic geometry, the smooth topology is a certain Grothendieck topology, which is finer than étale topology. Its main use is to define the cohomology of an algebraic stack with coefficients in, say, the étale sheaf . To understand the problem that motivates the notion, consider the classifying stack over . Then in the étale topology; i.e., just a point. However, we expect the "correct" cohomology ring of to be more like that of as the ring should classify line bundles. Thus, the cohomology of should be defined using smooth topology for formulae like Behrend's fixed point formula to hold. == Notes ==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Smooth topology」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|